AUTOMATIC MODELING OF PRONUNCIATION VARIATIONS

Ellen Eide
IBM T.J. Watson Research Center
P.O. Box 218 Room 23-126C
Yorktown Heights, NY 10598 USA

INTRODUCTION

Typically in a large vocabulary speech recognition
system a word is represented as a sequence of its con-
stituent phonemes as defined by a hand-generated lexi-
con, or as several alternative sequences if multiple pro-
nunciations of the word are allowed.

A major factor in the performance of a speech rec-
ognizer is the consistency between the way the speaker
pronounces the words and the way that the pronun-
ciation is specified in the dictionary; when there is a
mismatch recognition errors are likely to occur.

One approach to bridging the gap between lexi-
con and pronounced speech is to alter the dictionary
to reflect common pronunciation variations. Alter-
natively, one may choose to leave the dictionary un-
changed and reflect the pronuciation deviations in the
acoustic model topology. In this paper we report on
an implementation of the latter, an automatic method
for discovering an appropriate model for each context-
dependent phoneme which allows for such phenomena
as reduced pronunciations and substituted phonemes
where warranted by observation on training data.

During recognition in our baseline system, a hy-
pothesized word is first expanded into its phonemic
representation; each phoneme is then mapped into a se-
quence of subphonemic units, each of which has a sim-
ple model topology. Specifically, each phoneme maps
to a sequence of three subphonemic units, each of which
1s modeled as a single state with a self loop. The work
presented in this paper may be conceived of as replac-
ing the mapping from phoneme to subphonemic units
to simple model topology with a more complex map-
ping from context-dependent phoneme to an arbitrary
network of states.

We show a reduction in the word error rate on both
the Wall Street Journal and Broadcast News data-
bases, with a large part of the gain on the latter coming
from the spontaneous broadcast speech (F1) condition.

GENERATING OBSERVATIONS OF
STRINGS

For the purposes of discussion, the processing re-
quired to build context-dependent pronunciation net-
works may be divided into two parts: a sequence of
“pre-processing” steps resulting in sets of observations
from which to train the pronunciation networks and
the actual training of those networks. The material
described in this section constitutes the preprocessing
steps; the discussion in the next section describes the
building of the pronunciation networks given the ob-
servations.

The observations from which the networks are built
are sequences of label strings; each observed label se-

quence corresponds to the output of a constrained phoneme

recognizer for the portion of the waveform aligned to
a given phoneme by a Viterbi alignment.

The first step towards the generation of the sets
of observation label strings from which each pronun-
clation network is built, then, is to perform a Viterbi
alignment of the text to the speech waveform for each
of the training utterances. The canonical pronuncia-
tion of each word as defined by the lexicon, with the
usual three-state, left-to-right model is used in this
computation. The alignment step provides a labeled
segmentation of each utterance into phonetic regions,
with the labels corresponding to the states in the model
for each phoneme.

The second phase of preprocessing is to perform
some type of phoneme recognition on the training data.
We have chosen to use the same alphabet as in the
Viterbi alignment, i.e. thirds-of-phones. Our phoneme
recognizer consists of the same acoustic models as the
baseline speech recognition system along with a set of
transition probabilities among context-dependent phones.
Finding the most-likely sequence of phones yields quite
clean label sequences. The resulting label sequences
are segmented according to the subphonetic bound-

aries calculated in the Viterbi alignment and pooled
according to the state label associated with the align-
ment.

The third and final phase of preprocessing is to par-
tition the set of observation sequences for each phoneme
into context-dependent units. For this we use a deci-
sion tree which asks questions about phonetic context
and measures the goodness of a split in terms of the re-
duction in entropy in the distribution over labels. Each
leaf in this tree represents a context-dependent unit for
which we will build a pronunciation network using the
technique outlined in the previous section. Dropping
the training data down the tree yields a set of label
sequences for each context-dependent unit from which
to build the network which will characterize it.

Note that this tree is distinct from that which de-
fines the context-dependent units for which acoustic
models are built as will be discussed in the next sec-
tion.

PRONUNCIATION MODELS GIVEN
OBSERVED STRINGS

The discussion in this section assumes that we have
a set of observations in the form of sequences of phone-
mic labels and that the observations have been parti-
tioned based on phonetic context. These preprocess-
ing steps were described in the previous section. Hav-
ing obtained the observations, we would like to dis-
cover from them the observations a network of states
which represents well the collection of observed label
sequences for each context; the procedure by which we
build a network to represent the observations for each
context is the subject of this section.

This procedure is similar in spirit to that described
in [Stolcke 94] but differs from their implementation in
order to reduce the required computations.

For each context, we first discard all sequences con-
taining a symbol which has not been observed at least
N times in the pool of training sequences for this con-
text, where N is a hand-set threshold. We then di-
vide the remaining training observations into two sets,
a “development” set for building the initial networks
and a second “held-out” set for reducing the number
of states in the network.

Next, we build a large initial network which can
explain all the sequences in the development training
set. We have investigated initializing this network as
null and as the default three state left-to-right net-
work and have found the latter to provide slightly bet-
ter recognition results. Against the starting point of
null or the default network, we check the first obser-
vation to see if it may be explained by the existing

network. If so, we update transition probabilities only.
If the observation does not align to the existing net-
work, we add a parallel path consisting of one state
each time the phoneme in the sequence differs from
its left neighbor, with transition probabilities derived
from the number of repetitions of the phonemes within
the observation. For each remaining observation in the
development training pool we repeat the procedure,
checking whether it may be explained by the existing
network; if so we update transition probabilities and if
not we add a parallel path to the network. After all
observations have been incorporated into the network,
we prune all branches with transition probability into
the branch less than ¢ where € is a hand-determined
threshold.

Having built the initial network, we begin collaps-
ing states where such merges are favorable on our held-
out training data. Each state in the network is labeled
from the alphabet of subphonemic units, e.g. AA4;.
Only states which carry the same label are considered
for merge. The probability distribution over labels for
each state is concentrated entirely on the associated la-
bel; the likelihood of the held-out data is computed be-
fore and after a given merge. If the likelihood increases,
or if the number of observations which can be modeled
by the resulting network is larger than was the case
prior to the merge, the merge is retained; otherwise
the two states are kept distinct. Because states are
collapsed whenever an advantageous merge is found,
the order in which states are evaluated for merging im-
pacts the final network. We have somewhat arbitrarily
started with the first two states having the same label
and hold the first state fixed, sequentially evaluating
the second state until a good merge is found. Once
a merge 1is retained, we reset the starting state to be
the next state in the network from the current start-
ing state and iterate until no more good merges exist
or until there are fewer than S states in the network,
where S is a threshold set by hand.

Merging of two states consists of creating a new
state whose parents are the union of the parents of
the two states and whose children are itself plus the
children of the two states excluding those states them-
selves (self-loops) and deleting the two unmerged states
and their incoming and outgoing arcs.

Finally, two iterations of the E.M. algorithm are
run to estimate transition probabilities for the network.

USING PRONUNCIATION
NETWORKS IN RECOGNITION

During recognition, context-dependent pronuncia-
tion networks are used in lieu of the default three-

state model topologies. As the acoustic models are
also context-dependent, two distinct decision trees are
used by the recognizer: one to partition the space of
observed label sequences based on phonetic contexts
and one to partition the space of acoustic variations
of each state in the network given the same phonetic
context features. Having altered the phoneme topolgy
one would expect that rebuilding of the decision trees
to partition the acoustic variations for each state in
the network is necessary. However, because the label
alphabet for the states in the pronunciation networks
is the same as the units the phonetic-context decision
trees were built for in a baseline recognition system, we
can simply cluster the states based on their labels and
use the same decision trees as used in the baseline sys-
tem, which used one tree for each label. The Gaussian
mixture models for each leaf of these trees are those
of the baseline system; no acoustic retraining is neces-
sary. In fact, one disappointing result related to the
pronunciation networks is that retraining the Gauss-
ian model parameters using the E.M. algorithm and
the pronunciation network topologies did not lead to a
further decrease in the error.

DISCUSSION

The typical model topologies resulting from the
procedure are described here for the case of training
the networks on the Wall Street Journal data. In many
cases (89% of the context-dependent units unweighted
by frequency of occurrence) the network is exactly the
default three-state left-to-right network. In 5% of the
contexts the resulting network is the default network
plus one skip arc. The next most common network has
one additional state in parallel with the default. There
1s a relatively long tail, down to the case of a network
with 14 states. The most common interchage of labels
occurs in the networks associated with S and Z which
is consistent with the result from speech science that
the evidence to distinguish between these phonemes
occurs close to the boundaries of the phone and that
in the center of the region voicing activity for Z may
not be apparent.

RESULTS

The error rates resulting from using the pronuncia-
tion networks to define the context-dependent phoneme
model topologies are compared with the errors result-
ing from a baseline three-state, left-to-right model topol-
ogy which has no skips. We report the error rates
on both the Wall Street Journal and Broadcast News
databases. On WSJ, the baseline of 8.0% error fell to

7.4% when the pronunciation network topologies were
used in lieu of the default networks. On the Broadcast
News data the error rate was again reduced by us-
ing the pronunciation networks, as detailed in table 1.
Appealingly, the largest reduction in error occurs in
the case of spontaneous speech, a condition where we
would expect that pronunciations variations from the
lexical representation might be larger than what would
be observed in the case of planned speech, and there-
fore a condition for which this type of modeling would
be potentially valuable.

FO0O | F1 F2 F3 F4 F5 | FX
A || 911208280251 244 19.6 | 37.1
B |89 201|278 | 250|244 | 195 | 37.4

Table 1. Error rates on Broadcast News data. Con-
dition A is the baseline. Condition B uses pronuncia-
tion networks. FO=Clean/Planned Speech. F1=Clean
Spontaneous Speech. F2=Speech on Telephone Chan-
nels. F3=Speech with Background Music. F4=Speech
in Degraded Acoustics. Fb=Non-native speakers.
FX=Combinations of F1-Fb.

Also, as the error rate on “fast” speakers in our
baseline system is much higher than the error rate
for other speakers, we have analyzed the performance
gains obtained on the “fast” speakers and found the av-
erage error rate across all conditions to fall from 26.8
to 26.1 on those speakers by using the pronunciation
networks. Fast speakers were identified subjectively by
listening to the data as Donna Kelley and Leon Harris.
The pronunciation networks are identical to those used
for the results in table 1 and were trained on all the
training data, not just that from fast speakers.

REFERENCES

Stolcke, A. and S. Omohundro. “Best-first Model Merg-
ing for Hidden Markov Model Induction.” Interna-
tional Computer Science Institute report TR-94-003.
January 1994.

